Movement complexity and neuromechanical factors affect the entropic half-life of myoelectric signals

2Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

© 2017 Hodson-Tole and Wakeling. Appropriate neuromuscular functioning is essential for survival and features underpinning motor control are present in myoelectric signals recorded from skeletal muscles. One approach to quantify control processes related to function is to assess signal variability using measures such as Sample Entropy. Here we developed a theoretical framework to simulate the effect of variability in burst duration, activation duty cycle, and intensity on the Entropic Half-Life (EnHL) in myoelectric signals. EnHLs were predicted to be < 40 ms, and to vary with fluctuations in myoelectric signal amplitude and activation duty cycle. Comparison with myoelectic data from rats walking and running at a range of speeds and inclines confirmed the range of EnHLs, however, the direction of EnHL change in response to altered locomotor demand was not correctly predicted. The discrepancy reflected different associations between the ratio of the standard deviation and mean signal intensity (Ist:It) and duty factor in simulated and physiological data, likely reflecting additional information in the signals from the physiological data (e.g., quiescent phase content; variation in action potential shapes). EnHL could have significant value as a novel marker of neuromuscular responses to alterations in perceived locomotor task complexity and intensity.

Cite

CITATION STYLE

APA

Hodson-Tole, E. F., & Wakeling, J. M. (2017). Movement complexity and neuromechanical factors affect the entropic half-life of myoelectric signals. Frontiers in Physiology, 8(SEP). https://doi.org/10.3389/fphys.2017.00679

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free