MTOR-dependent and independent survival signaling by PI3K in B lymphocytes

Citations of this article
Mendeley users who have this article in their library.


Peripheral B lymphocyte survival requires the B cell receptor (BCR) and B cell activating factor (BAFF) binding to its receptor (BAFF-R). Deletion of the BCR, or its signal transducing chaperone Igβ, leads to rapid loss of mature B cells, indicating that signals initiated at the BCR are crucial for B cell survival. BAFF or BAFF-R deficiency also significantly reduces the numbers of mature B cells despite normal BCR expression. Together, these observations indicate that continued BCR and BAFF-R signaling are essential for the survival of mature resting B cells in the periphery. Here we demonstrate that tonic BCR signals up-regulate p100 (Nfkb2) as well as Mcl-1 protein expression at a post-transcriptional level via a PI3K-dependent pathway. p100 expression is mTOR-independent, whereas Mcl-1 expression is mTOR-dependent. BAFF treatment further elevated Mcl-1 levels by an mTOR-independent pathway, while consuming p100. Accordingly, Mcl-1 induction by BAFF is abrogated in Nfkb2-/- B cells. We propose that the cumulative effects of the BCR and BAFF-R signaling pathways increase Mcl-1 levels beyond the threshold required for B cell survival.




Kaileh, M., Vazquez, E., MacFarlane, A. W., Campbell, K., Kurosaki, T., Siebenlist, U., & Sen, R. (2016). MTOR-dependent and independent survival signaling by PI3K in B lymphocytes. PLoS ONE, 11(1).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free