Multipoint entanglement in disordered systems

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases – MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase – some of these show considerable generation and delocalization of quantum information.

Author supplied keywords

Cite

CITATION STYLE

APA

Magán, J. M., Paganelli, S., & Oganesyan, V. (2017). Multipoint entanglement in disordered systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 381(5), 535–541. https://doi.org/10.1016/j.physleta.2016.12.004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free