A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media

15Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

A Galerkin approach for a class of multiscale reaction-diffusion systems with nonlinear coupling between the microscopic and macroscopic variables is presented. This type of models are obtained e.g. by upscaling of processes in chemical engineering (particularly in catalysis), biochemistry, or geochemistry. Exploiting the special structure of the models, the functions spaces used for the approximation of the solution are chosen as tensor products of spaces on the macroscopic domain and on the standard cell associated to the microstructure. Uniform estimates for the finite dimensional approximations are proven. Based on these estimates, the convergence of the approximating sequence is shown. This approach can be used as a basis for the numerical computation of the solution. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Muntean, A., & Neuss-Radu, M. (2010). A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media. Journal of Mathematical Analysis and Applications, 371(2), 705–718. https://doi.org/10.1016/j.jmaa.2010.05.056

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free