Multivariate mode hunting: Data analytic tools with measures of significance

15Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Multivariate mode hunting is of increasing practical importance. Only a few such methods exist, however, and there usually is a trade-off between practical feasibility and theoretical justification. In this paper we attempt to do both. We propose a method for locating isolated modes (or better, modal regions) in a multivariate data set without pre-specifying their total number. Information on significance of the findings is provided by means of formal testing for the presence of antimodes. Critical values of the tests are derived from large sample considerations. The method is designed to be computationally feasible in moderate dimensions, and it is complemented by diagnostic plots. Since the null hypothesis under consideration is highly composite the proposed tests involve calibration in order to ensure a correct (asymptotic) level. Our methods are illustrated by application to real data sets. © 2008 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Burman, P., & Polonik, W. (2009). Multivariate mode hunting: Data analytic tools with measures of significance. Journal of Multivariate Analysis, 100(6), 1198–1218. https://doi.org/10.1016/j.jmva.2008.10.015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free