Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue

46Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Cardiac energetics and performance depend on the expression level of the fast (α-) and slow (β-) myosin heavy chain (MHC) isoform. In ventricular tissue, the β-MHC isoform predominates, whereas in atrial tissue a variable mixture of α- and β-MHC is found. In several cardiac diseases, the slow isoform is upregulated; however, the functional implications of this transition in human myocardium are largely unknown. The aim of this study was to determine the relation between contractile properties and MHC isoform composition in healthy human myocardium using the diversity in atrial tissue. Isometric force production and ATP consumption were measured in chemically skinned atrial trabeculae and ventricular muscle strips, and rate of force redevelopment was studied using single cardiomyocytes. MHC isoform composition was determined by one-dimensional SDS-gel electrophoresis. Force development in ventricular tissue was about 5-fold more economical, but nine times slower, than in atrial tissue. Significant linear correlations were found between MHC isoform composition, ATP consumption and rate of force redevelopment. These results clearly indicate that even a minor shift in MHC isoform expression has considerable impact on cardiac performance in human tissue. © 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Narolska, N. A., Van Loon, R. B., Boontje, N. M., Zaremba, R., Penas, S. E., Russell, J., … Stienen, G. J. M. (2005). Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovascular Research, 65(1), 221–229. https://doi.org/10.1016/j.cardiores.2004.09.029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free