On the nature of soil moisture in land surface models

404Citations
Citations of this article
322Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The soil moisture state simulated by a land surface model is a highly model-dependent quantity, meaning that the direct transfer of one model's soil moisture into another can lead to a fundamental, and potentially detrimental, inconsistency. This is first illustrated with two recent examples, one from the National Centers for Environmental Prediction (NCEP) involving seasonal precipitation forecasting and another from the realm of ecological modeling. The issue is then further addressed through a quantitative analysis of soil moisture contents produced as part of a global offline simulation experiment in which a number of land surface models were driven with the same atmospheric forcing fields. These latter comparisons clearly demonstrate, on a global scale, the degree to which model-simulated soil moisture variables differ from each other and that these differences extend beyond those associated with model-specific layer thicknesses or soil texture. The offline comparisons also show, however, that once the climatological statistics of each model's soil moisture variable are accounted for (here, through a simple scaling using the first two moments), the different land models tend to produce very similar information on temporal soil moisture variability in most parts of the world. This common information can perhaps be used as the basis for successful mappings between the soil moisture variables in different land models. © 2009 American Meteorological Society.

Cite

CITATION STYLE

APA

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., & Puma, M. J. (2009). On the nature of soil moisture in land surface models. Journal of Climate, 22(16), 4322–4335. https://doi.org/10.1175/2009JCLI2832.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free