Neural extrapolation of motion for a ball rolling down an inclined plane

22Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. © 2014 La Scaleia et al.

Cite

CITATION STYLE

APA

La Scaleia, B., Lacquaniti, F., & Zago, M. (2014). Neural extrapolation of motion for a ball rolling down an inclined plane. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099837

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free