Nitrosative stress in plants

Citations of this article
Mendeley users who have this article in their library.


Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l-arginine-dependent production of nitric oxide (NOS activity) was measured by ozone chemiluminiscence. The specific activity of NOS in olive leaves was 0.280 nmol NO mg-1 protein min-1, and was dependent on l-arginine, NADPH and calcium. Salt stress (200 mM NaCl) caused an increase of the l-arginine-dependent production of nitric oxide (NO), total S-nitrosothiols (RSNO) and number of proteins that underwent tyrosine nitration. Confocal laser scanning microscopy analysis using either specific fluorescent probes for NO and RSNO or antibodies to S-nitrosoglutathione and 3-nitrotyrosine, showed also a general increase of these reactive nitrogen species (RNS) mainly in the vascular tissue. Taken together, these findings show that in olive leaves salinity induces nitrosative stress, and vascular tissues could play an important role in the redistribution of NO-derived molecules during nitrosative stress. © 2007 Federation of European Biochemical Societies.




Valderrama, R., Corpas, F. J., Carreras, A., Fernández-Ocaña, A., Chaki, M., Luque, F., … Barroso, J. B. (2007). Nitrosative stress in plants. FEBS Letters, 581(3), 453–461.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free