Nitrous oxide dynamics in low oxygen regions of the Pacific: Insights from the MEMENTO database

36Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

The eastern tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide (N2O). Future N2O emissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N2O. Here we assess three primary uncertainties in how N2O may respond to changing O2 levels: (1) the relationship between N2O production and O2 (is it linear or exponential at low O2 concentrations?), (2) the cutoff point at which net N2O production switches to net N2O consumption (uncertainties in this parameterisation can lead to differences in model ETP N2O concentrations of more than 20%), and (3) the rate of net N 2O consumption at low O2. Based on the MEMENTO database, which is the largest N2O dataset currently available, we find that N2O production in the ETP increases linearly rather than exponentially with decreasing O2. Additionally, net N2O consumption switches to net N2O production at ∼ 10 μ1/4M O2, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N2O consumption is on the order of 0.01-1 mmol N2O m-3 yr-1 in the Peru-Chile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N2O production in the ETP. In light of expected deoxygenation and the higher than previously expected point at which net N2O production switches to consumption, there is enough uncertainty in future N2O production that even the sign of future changes is still unclear. © 2012 Author(s).

Cite

CITATION STYLE

APA

Zamora, L. M., Oschlies, A., Bange, H. W., Huebert, K. B., Craig, J. D., Kock, A., & Löscher, C. R. (2012). Nitrous oxide dynamics in low oxygen regions of the Pacific: Insights from the MEMENTO database. Biogeosciences, 9(12), 5007–5022. https://doi.org/10.5194/bg-9-5007-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free