Numerical and Experimental Study on Laminar Methane/Air Premixed Flames at Varying Pressure

Citations of this article
Mendeley users who have this article in their library.


Laminar methane/air premixed Bunsen flames were studied using detailed numerical simulations and laser diagnostics. In the numerical simulations one-dimensional and two-dimensional configurations were considered with detailed transport properties and chemical kinetic mechanism. In the measurements OH PLIF was employed. The flame structures vary with varying equivalence ratio and pressure. For stoichiometric mixture at atmospheric pressure the flame exhibits a single reaction zone structure, while at high-pressures the flame exhibits a two-reaction zone structure: an inner premixed flame and an outer diffusion flame. The predicted two-zone structure is confirmed in the OH PLIF measurements. Using the numerical and the experimental data the methods of flame-cone-angle and flame-area have been used to extract the laminar flame speed for different equivalence ratios and pressures. It is found that although the flame cone angle method is widely used, it yields a lower accuracy than that of the flame surface area method. The inlet velocity of the burner is shown to affect the accuracy of extracted laminar flame speed. It is suggested that the most suitable inlet velocity of methane-air mixture is about 6 times the laminar flame speed.




Hu, S., Gao, J., Zhou, Y., Gong, C., Bai, X. S., Li, Z., & Alden, M. (2017). Numerical and Experimental Study on Laminar Methane/Air Premixed Flames at Varying Pressure. In Energy Procedia (Vol. 105, pp. 4970–4975). Elsevier Ltd.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free