Numerical investigation on lithium transport in the edge plasma of EAST real-time- Li-injection experiments in the frame of BOUT++

0Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

To study the transport of Li species in the plasma with real-time Li aerosol injection on EAST, a model has been developed by reducing Braginskii's equations, and implemented in the frame of BOUT++. The simulation results show that Li atoms propagate inwards since the Li injection, and their penetration depth depends on both the local plasma conditions along their path and initial injection velocity. It is also found that Li ions accumulate rapidly in the edge, and only a small fraction of Li species can transport cross the separatrix into the core. In the poloidal direction, Li ions drift swiftly downwards along the field lines, and transport much faster at the high field side than at the low field side. The interaction between background plasma and Li species plays a critical role in determining the edge plasma profile. It is found that real-time Li injection raises the plasma density in the pedestal region and reduces the plasma temperature, just as has been observed experimentally.

Author supplied keywords

Cite

CITATION STYLE

APA

Li, N. M., Sun, J. Z., Wang, Z. H., Xu, X. Q., Sun, Z., Wang, L., … Wang, D. Z. (2017). Numerical investigation on lithium transport in the edge plasma of EAST real-time- Li-injection experiments in the frame of BOUT++. Nuclear Materials and Energy, 12, 119–123. https://doi.org/10.1016/j.nme.2016.12.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free