Numerical modeling of the lateral widening of levee breach by overtopping in a flume with 180 bend

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

<p><strong>Abstract.</strong> Floods caused by levee breaching pose disastrous risks to the lower reaches and the flood flow zones of rivers. Thus, a comprehensive assessment of flow and sediment transport during floods must be performed to mitigate flood disasters. Given that the flow state becomes relatively more complex and the range of the submerged area becomes more extensive after a levee breach, this paper established a flow and sediment model by using two-dimensional shallow water equations (SWEs) to explore the breach development process and the flow and sediment transport in a curved bed after a levee breach due to overtopping. A three-element weighted essentially non-oscillatory Roe scheme was adopted for the discretization of SWEs. In addition, a non-equilibrium total-load sediment transport model was established to simulate the scour depth development process of the breach. A stable equilibrium of the breach was established based on flow shear force and soil shear strength. The lateral widening of the breach was simulated by the scouring-collapse lateral widening mode. These simulations, together with the levee breach experiment conducted in the laboratory, demonstrate the validity of the flow and sediment transport process established in this paper. The effects of water head in and out of the watercourse, the flow rate, the levee sediment grading, and other variables during levee breaching were also analyzed. The mathematical model calculation provided a number of physical quantities, such as flow rate and flow state at the breach, that are difficult to measure by using the current laboratory facilities. The results of this research provide fundamental data for developing measures that can reduce casualties and asset loss due to floods caused by levee breaching.</p>

Cite

CITATION STYLE

APA

Dou, S. T., Wang, D. W., Yu, M. H., & Liang, Y. J. (2014). Numerical modeling of the lateral widening of levee breach by overtopping in a flume with 180 bend. Natural Hazards and Earth System Sciences, 14(1), 11–20. https://doi.org/10.5194/nhess-14-11-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free