Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Acoustic streaming and its attendant effects in the sump of a direct-chill (DC) casting process are successfully predicted under ultrasonic treatment for the first time. The proposed numerical model couples acoustic cavitation, fluid flow, heat and species transfer, and solidification to predict the flow pattern, acoustic pressure, and temperature fields in the sump. The model is numerically stable with time steps of the order of 0.01 s and therefore computationally attractive for optimization studies necessitating simulation times of the order of a minute. The sump profile is altered by acoustic streaming, with the slurry region depressed along the centreline of the billet by a strong central jet. The temperature gradient in the transition zone is increased, potentially interfering with grain refinement. The cooling rate in the sump is also altered, thereby modifying the dendrite arm spacing of the as-cast billet. The relative position of the sonotrode affects the sump profile, with the sump depth decreased by around 5 mm when the sonotrode is moved above the graphite ring level by 100 mm. The acoustic streaming jet penetrates into the slurry zone and, as a result, the growth direction of dendritic grains in the off-centre position is altered.

Cite

CITATION STYLE

APA

Lebon, G. S. B., Salloum-Abou-Jaoude, G., Eskin, D., Tzanakis, I., Pericleous, K., & Jarry, P. (2019). Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting. Ultrasonics Sonochemistry, 54, 171–182. https://doi.org/10.1016/j.ultsonch.2019.02.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free