Numerical Simulation of Bubble Coalescence and Break-Up in Multinozzle Jet Ejector

  • Patel D
  • Chaudhari A
  • Laari A
  • et al.
Citations of this article
Mendeley users who have this article in their library.


Designing the jet ejector optimally is a challenging task and has a great impact on industrial applications. Three different sets of nozzles (namely, 1, 3, and 5) inside the jet ejector are compared in this study by using numerical simulations. More precisely, dynamics of bubble coalescence and breakup in the multinozzle jet ejectors are studied by means of Computational Fluid Dynamics (CFD). The population balance approach is used for the gas phase such that different bubble size groups are included in CFD and the number densities of each of them are predicted in CFD simulations. Here, commercial CFD software ANSYS Fluent 14.0 is used. The realizable k - ε turbulence model is used in CFD code in three-dimensional computational domains. It is clear that Reynolds-Averaged Navier-Stokes (RANS) models have their limitations, but on the other hand, turbulence modeling is not the key issue in this study and we can assume that the RANS models can predict turbulence of the carrying phase accurately enough. In order to validate our numerical predictions, results of one, three, and five nozzles are compared to laboratory experiments data for Cl 2 -NaOH system. Predicted gas volume fractions, bubble size distributions, and resulting number densities of the different bubble size groups as well as the interfacial area concentrations are in good agreement with experimental results.




Patel, D., Chaudhari, A., Laari, A., Heiliö, M., Hämäläinen, J., & Agrawal, K. (2016). Numerical Simulation of Bubble Coalescence and Break-Up in Multinozzle Jet Ejector. Journal of Applied Mathematics, 2016, 1–19.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free