Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode

6Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Background: Hematoxylin & Eosin (H&E) is a widely employed technique in pathology and histology to distinguish nuclei and cytoplasm in tissues by staining them in different colors. This procedure helps to ease the diagnosis by enhancing contrast through digital microscopes. However, microscopic digital images obtained from this technique usually suffer from uneven lighting, i.e. poor Koehler illumination. Several off-the-shelf methods particularly established to correct this problem along with some popular general commercial tools have been examined to find out a robust solution. Methods. First, the characteristics of uneven lighting in pathological images obtained from the H&E technique are revealed, and then how the quality of these images can be improved by employing bilinear interpolation based approach applied on the channels of Lab color mode is explored without losing any essential detail, especially for the color information of nuclei (hematoxylin stained sections). Second, an approach to enhance the nuclei details that are a fundamental part of diagnosis and crucially needed by the pathologists who work with digital images is demonstrated. Results: Merits of the proposed methodology are substantiated on sample microscopic images. The results show that the proposed methodology not only remedies the deficiencies of H&E microscopical images, but also enhances delicate details. Conclusions: Non-uniform illumination problems in H&E microscopical images can be corrected without compromising crucial details that are essential for revealing the features of tissue samples. © 2014 Kuru; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Kuru, K. (2014). Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode. Theoretical Biology and Medical Modelling, 11(1). https://doi.org/10.1186/1742-4682-11-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free