Oxidative damage in pea plants exposed to water deficit or paraquat

400Citations
Citations of this article
203Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The application of a moderate water deficit (water potential of -1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (-1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.

Cite

CITATION STYLE

APA

Iturbe-Ormaetxe, I., Escuredo, P. R., Arrese-Igor, C., & Becana, M. (1998). Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 116(1), 173–181. https://doi.org/10.1104/pp.116.1.173

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free