Pds5 cooperates with cohesion in maintaining sister chromatid cohesion

175Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

Abstract

Background: Sister chromatid cohesion depends on a complex called cohesin, which contains at least four subunits: Smc1, Smc3, Scc1 and Scc3. Cohesion is established during DNA replication, is partially dismantled in many, but not all, organisms during prophase, and is finally destroyed at the metaphase-to anaphase transition. A quite separate protein called Spo76 is required for sister chromatid cohesion during meiosis in the ascomycete Sordaria. Spo76-1ike proteins are highly conserved amongst eukaryotes and a homologue in Aspergillus nidulans, called BimD, is required for the completion of mitosis. The isolation of the cohesion subunit Smc3 as a suppressor of BimD mutations suggests that Spo76/BimD might function in the same process as cohesion. Results: We show here that the yeast homologue of Spo76, called Pds5, is essential for establishing sister chromatid cohesion and maintaining it during metaphase. We also show that Pds5 co-localizes with cohesion on chromosomes, that the chromosomal association of Pds5 and cohesion is interdependent, that Scc1 recruits Pds5 to chromosomes in G1 and that its cleavage causes dissociation of Pds5 from chromosomes at the metaphase-to anaphase transition. Conclusions: Our data show that Pds5 functions as part of the same process as cohesion. Sequence similarities and secondary structure predictions indicate that Pds5 consists of tandemly repeated HEAT repeats, and might therefore function as a protein-protein interaction scaffold, possibly in the cohesion-DNA complex assembly.

Cite

CITATION STYLE

APA

Panizza, S., Tanaka, T., Hochwagen, A., Eisenhaber, F., & Nasmyth, K. (2000). Pds5 cooperates with cohesion in maintaining sister chromatid cohesion. Current Biology, 10(24), 1557–1564. https://doi.org/10.1016/S0960-9822(00)00854-X

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free