Performance Analysis of Parallel Python Applications

Citations of this article
Mendeley users who have this article in their library.


Python is progressively consolidating itself within the HPC community with its simple syntax, large standard library, and powerful third-party libraries for scientific computing that are especially attractive to domain scientists. Despite Python lowering the bar for accessing parallel computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after all. Yet, at the moment only few supporting tools exist and provide merely basic information in the form of summarized profile data. In this paper, we present our efforts in developing event-based tracing support for Python within the performance monitor Extrae to provide detailed information and enable a profound performance analysis. We present concepts to record the complete communication behavior as well as to capture entry and exit of functions in Python to provide the according application context. We evaluate our implementation in Extrae by analyzing the well-established electronic structure simulation package GPAW and demonstrate that the recorded traces provide equivalent information as for traditional C or Fortran applications and, therefore, offering the same profound analysis capabilities now for Python, as well.




Wagner, M., Llort, G., Mercadal, E., Giménez, J., & Labarta, J. (2017). Performance Analysis of Parallel Python Applications. In Procedia Computer Science (Vol. 108, pp. 2171–2179). Elsevier B.V.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free