PH-driven polymorphism of insulin amyloid-like fibrils

Citations of this article
Mendeley users who have this article in their library.


Prions are infective proteins, which can self-assemble into different strain conformations, leading to different disease phenotypes. An increasing number of studies suggest that prion-like self-propagation may be a common feature of amyloid-like structures. Thus it is important to unravel every possible factor leading to the formation of different amyloid strains. Here we report on the formation of two types of insulin amyloid-like fibrils with distinct infrared spectroscopic features grown under slightly different pH conditions. Similar to prion strains, both insulin fibril types are able to self-propagate their conformational template under conditions, favoring spontaneous formation of different type fibrils. The low-pH-induced insulin amyloid strain is structurally very similar to previously reported strains formed either in the presence of 20% ethanol, or by modification of the amino acid sequence of insulin. A deeper analysis of literature data in the context of our current findings suggests a shift of the monomer-dimer equilibrium of insulin as a possible factor controlling the formation of different strains.




Sneideris, T., Darguzis, D., Botyriute, A., Grigaliunas, M., Winter, R., & Smirnovas, V. (2015). PH-driven polymorphism of insulin amyloid-like fibrils. PLoS ONE, 10(8).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free