Phylogenetic analysis and tissue distribution of elasmobranch glucose transporters and their response to feeding

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Elasmobranch diets consist of high quantities of protein and lipids, but very low levels of carbohydrates including glucose. Reflecting this diet, most tissues use lipids and ketone bodies as their main metabolic fuel. However, the rectal gland has been shown to be dependent on glucose as a fuel, so we hypothesized that glucose transporters (GLUTs) would be present and upregulated in the gland during times of activation (e.g. following a meal). In this study, we searched for and identified putative class I GLUTs in three elasmobranchs and a holocephalan using transcriptomes, and used these to reconstruct a Bayesian phylogeny. We determined that each of the four species possessed three of the four class I GLUT sequences, but the identities of the isoforms present in each species differed between the elasmobranchs (GLUT1, 3 and 4) and the holocephalan (GLUT1, 2 and 3). We then used qPCR to measure mRNA levels of these GLUTs in the rectal gland, liver, intestine, and muscle of fed and starved spiny dogfish (Squalus suckleyi). The rectal gland data showed higher mRNA levels of GLUT4 in the starved relative to the fed fish. In the muscle, both GLUT1 and 4 were significantly elevated at 24 h post-feeding, as was the case for GLUT4 in the liver. In the intestine on the other hand, GLUT4 was significantly elevated by 6 h post-feeding, remaining elevated through 48 h. We suggest that GLUT4 has taken on the role of GLUT2 in elasmobranchs as the expression patterns observed in the liver and intestine are representative of GLUT2 in other vertebrates.

Cite

CITATION STYLE

APA

Deck, C. A., LeMoine, C. M. R., & Walsh, P. J. (2016). Phylogenetic analysis and tissue distribution of elasmobranch glucose transporters and their response to feeding. Biology Open, 5(3), 256–261. https://doi.org/10.1242/bio.016709

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free