Physiome-Model-Based State-Space Framework for Cardiac Deformation Recovery

19Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Rationale and Objectives: To more reliably recover cardiac information from noise-corrupted, patient-specific measurements, it is essential to employ meaningful constraining models and adopt appropriate optimization criteria to couple the models with the measurements. Although biomechanical models have been extensively used for myocardial motion recovery with encouraging results, the passive nature of such constraints limits their ability to fully count for the deformation caused by active forces of the myocytes. To overcome such limitations, we propose to adopt a cardiac physiome model as the prior constraint for cardiac motion analysis. Materials and Methods: The cardiac physiome model comprises an electric wave propagation model, an electromechanical coupling model, and a biomechanical model, which are connected through a cardiac system dynamics for a more complete description of the macroscopic cardiac physiology. Embedded within a multiframe state-space framework, the uncertainties of the model and the patient's measurements are systematically dealt with to arrive at optimal cardiac kinematic estimates and possibly beyond. Results: Experiments have been conducted to compare our proposed cardiac-physiome-model-based framework with the solely biomechanical model-based framework. The results show that our proposed framework recovers more accurate cardiac deformation from synthetic data and obtains more sensible estimates from real magnetic resonance image sequences. Conclusion: With the active components introduced by the cardiac physiome model, cardiac deformations recovered from patient's medical images are more physiologically plausible. © 2007 AUR.

Cite

CITATION STYLE

APA

Wong, K. C. L., Zhang, H., Liu, H., & Shi, P. (2007). Physiome-Model-Based State-Space Framework for Cardiac Deformation Recovery. Academic Radiology, 14(11), 1341–1349. https://doi.org/10.1016/j.acra.2007.07.026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free