Piezoresistive tactile sensor discriminating multidirectional forces

Citations of this article
Mendeley users who have this article in their library.


© 2015 by the authors; licensee MDPI, Basel, Switzerland. Flexible tactile sensors capable of detecting the magnitude and direction of the applied force together are of great interest for application in human-interactive robots, prosthetics, and bionic arms/feet. Human skin contains excellent tactile sensing elements, mechanoreceptors, which detect their assigned tactile stimuli and transduce them into electrical signals. The transduced signals are transmitted through separated nerve fibers to the central nerve system without complicated signal processing. Inspired by the function and organization of human skin, we present a piezoresistive type tactile sensor capable of discriminating the direction and magnitude of stimulations without further signal processing. Our tactile sensor is based on a flexible core and four sidewall structures of elastomer, where highly sensitive interlocking piezoresistive type sensing elements are embedded. We demonstrate the discriminating normal pressure and shear force simultaneously without interference between the applied forces. The developed sensor can detect down to 128 Pa in normal pressure and 0.08 N in shear force, respectively. The developed sensor can be applied in the prosthetic arms requiring the restoration of tactile sensation to discriminate the feeling of normal and shear force like human skin.




Jung, Y., Lee, D. G., Park, J., Ko, H., & Lim, H. (2015). Piezoresistive tactile sensor discriminating multidirectional forces. Sensors (Switzerland), 15(10), 25463–25473. https://doi.org/10.3390/s151025463

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free