A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique

82Citations
Citations of this article
159Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Hepatitis is an inflammation of the liver, most commonly caused by a viral infection. Supervised data mining techniques have been successful in hepatitis disease diagnosis through a set of datasets. Many methods have been developed by the aids of data mining techniques for hepatitis disease diagnosis. The majority of these methods are developed by single learning techniques. In addition, these methods do not support the ensemble learning of the data. Combining the outputs of several predictors can result in improved accuracy in classification problems. This study aims to propose an accurate method for the hepatitis disease diagnosis by taking the advantages of ensemble learning. Methods: We use Non-linear Iterative Partial Least Squares to perform the data dimensionality reduction, Self-Organizing Map technique for clustering task and ensembles of Neuro-Fuzzy Inference System for predicting the hepatitis disease. We also use decision trees for the selection of most important features in the experimental dataset. We test our method on a real-world dataset and present our results in comparison with the latest results of previous studies. Results: The results of our analyses on the dataset demonstrated that our method performance is superior to the Neural Network, ANFIS, K-Nearest Neighbors and Support Vector Machine. Conclusions: The method has potential to be used as an intelligent learning system for hepatitis disease diagnosis in the healthcare.

Cite

CITATION STYLE

APA

Nilashi, M., Ahmadi, H., Shahmoradi, L., Ibrahim, O., & Akbari, E. (2019). A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. Journal of Infection and Public Health, 12(1), 13–20. https://doi.org/10.1016/j.jiph.2018.09.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free