Propagation Modeling of Point Source Excited Magnetoinductive Waves Based on a New Plane Wave Expansion Approach

  • Liu F
  • Zhang Z
  • Zhu L
  • et al.
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The signal fading in wireless underground sensor networks (WUSNs), which is caused by lossy media such as soil and sand, can be reduced by applying technology of magnetoinductive (MI) propagation. This technology can effectively establish a communication at very low frequency (VLF). In contrast to the previous studies in the literature, which mostly focus on the propagation of plane waves, we propose a new approach based on the plane wave expansion (PWE) to model the near field MI waves. The proposed approach is based on excitation of a point source, which is a common case in a practical WUSN. The frequent usage of square lattice MI structure is investigated. To verify the mathematical derivation, the simulation of time domain based on the fourth-order Runge-Kutta (RK) method is carried out. Simulation results show that the new model can provide a precise prediction to the MI wave’s propagation, with the computation load being one-tenth of that of the time domain simulation. The characteristics of the propagation of the MI waves are presented and discussed. Finally, the reflection on the edge of the MI structure is reduced by analysing the terminal matching conditions and calculating a method for matching impedances.

Cite

CITATION STYLE

APA

Liu, F., Zhang, Z., Zhu, L., & Liu, Y. (2015). Propagation Modeling of Point Source Excited Magnetoinductive Waves Based on a New Plane Wave Expansion Approach. Mathematical Problems in Engineering, 2015, 1–9. https://doi.org/10.1155/2015/951718

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free