Propagation of orientation selectivity in a spiking network model of layered primary visual cortex

Citations of this article
Mendeley users who have this article in their library.


Neurons in different layers of sensory cortex generally have different functional properties. But what determines firing rates and tuning properties of neurons in different layers? Orientation selectivity in primary visual cortex (V1) is an interesting case to study these questions. Thalamic projections essentially determine the preferred orientation of neurons that receive direct input. But how is this tuning propagated though layers, and how can selective responses emerge in layers that do not have direct access to the thalamus? Here we combine numerical simulations with mathematical analyses to address this problem. We find that a large-scale network, which just accounts for experimentally measured layer and cell-type specific connection probabilities, yields firing rates and orientation selectivities matching electrophysiological recordings in rodent V1 surprisingly well. Further analysis, however, is complicated by the fact that neuronal responses emerge in a dynamic fashion and cannot be directly inferred from static neuroanatomy, as some connections tend to have unintuitive effects due to recurrent interactions and strong feedback loops. These emergent phenomena can be understood by linearizing and coarse-graining. In fact, we were able to derive a low-dimensional linear dynamical system effectively describing stimulus-driven activity layer by layer. This low-dimensional system explains layer-specific firing rates and orientation tuning by accounting for the different gain factors of the aggregate system. Our theory can also be used to design novel optogenetic stimulation experiments, thus facilitating further exploration of the interplay between connectivity and function.




Merkt, B., Schüßler, F., & Rotter, S. (2019). Propagation of orientation selectivity in a spiking network model of layered primary visual cortex. PLoS Computational Biology, 15(7).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free