Publication metrics and success on the academic job market

57Citations
Citations of this article
478Readers
Mendeley users who have this article in their library.

Abstract

The number of applicants vastly outnumbers the available academic faculty positions. What makes a successful academic job market candidate is the subject of much current discussion [1-4]. Yet, so far there has been no quantitative analysis of who becomes a principal investigator (PI). We here use a machine-learning approach to predict who becomes a PI, based on data from over 25,000 scientists in PubMed. We show that success in academia is predictable. It depends on the number of publications, the impact factor (IF) of the journals in which those papers are published, and the number of papers that receive more citations than average for the journal in which they were published (citations/IF). However, both the scientist's gender and the rank of their university are also of importance, suggesting that non-publication features play a statistically significant role in the academic hiring process. Our model (www.pipredictor.com) allows anyone to calculate their likelihood of becoming a PI.

Cite

CITATION STYLE

APA

Van Dijk, D., Manor, O., & Carey, L. B. (2014, June 2). Publication metrics and success on the academic job market. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2014.04.039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free