A rapid, physiologic protocol for testing transcriptional effects of thyroid-disrupting agents in premetamorphic Xenopus tadpoles

26Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Increasing numbers of substances present in the environment are postulated to have endocrine-disrupting effects on vertebrate populations. However, data on disruption of thyroid signaling are fragmentary, particularly at the molecular level. Thyroid hormone (TH; triiodothyronine, T 3 ) acts principally by modulating transcription from target genes; thus, thyroid signaling is particularly amenable to analysis with a transcriptional assay. Also, T 3 orchestrates amphibian metamorphosis, thereby providing an exceptional model for identifying thyroid-disrupting chemicals. We combined these two advantages to develop a method for following and quantifying the transcriptional action of T 3 in Xenopus laevis tadpoles. This technology provides a means of assessing thyroid activity at the molecular level in a physiologically relevant situation. Moreover, translucent tadpoles are amenable to "on-line" imaging with fluorescent reporter constructs that facilitate in vivo measurement of transcriptional activity. We adapted transgenesis with TH-responsive elements coupled to either luciferase or green fluorescent protein to follow T 3 -dependent transcription in vivo. To reduce time of exposure and to synchronize responses, we optimized a physiologic pretreatment protocol that induced competence to respond to T 3 and thus to assess T 3 effects and T 3 disruption within 48 hr. This pretreatment protocol was based on a short (24 hr), weak (10 -12 M) pulse of T 3 that induced TH receptors, facilitating and synchronizing the transcriptional responses. This protocol was successfully applied to somatic and germinal transgenesis with both reporter systems. Finally, we show that the transcriptional assay allows detection of the thyroid-disrupting activity of environmentally relevant concentrations (10 -8 M) of acetochlor, a persistent herbicide.

Cite

CITATION STYLE

APA

Turque, N., Palmier, K., Le Mével, S., Alliot, C., & Demeneix, B. A. (2005). A rapid, physiologic protocol for testing transcriptional effects of thyroid-disrupting agents in premetamorphic Xenopus tadpoles. Environmental Health Perspectives, 113(11), 1588–1593. https://doi.org/10.1289/ehp.7992

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free