Rapid self-assembly of DNA on a microfluidic chip

Citations of this article
Mendeley users who have this article in their library.


Background: DNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation. Results: We have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection. Conclusions: We believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process.




Zheng, Y., Footz, T., Manage, D. P., & Backhouse, C. J. (2005). Rapid self-assembly of DNA on a microfluidic chip. Journal of Nanobiotechnology, 3. https://doi.org/10.1186/1477-3155-3-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free