Reactant Control System for Proton Exchange Membrane Fuel Cell

0Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The Proton Exchange Membrane Fuel Cell (PEMFC) has been a focus in many fuel cell studies for tremendous commercialization. It generates an efficient and reliable power with a suitable system to ensure its electrochemical reaction operates well. In this paper, a reactant system is being discussed. Significant parameters such as reactant pressure, flow rate and stoichiometric ratio are the major factors for a reliable performance. A fuel cell owning a complex structure with traditional reactant requirement generally gives an unsatisfactory performance when facing dynamic loading instances. Fuel starvation usually occurs especially during transients where the reactants consumed are higher than being supplied. This in turn causes a problem to the MEA components such as platinum particles agglomeration, carbon corrosion and even cell reversal problem that lead to degeneration of fuel cell. Hence, excess stoichiometric ratio need to be supplied to prevent this issue and ensure a dynamic operation at the same time avoid the wastage issues. A development of a system identification and control strategy for reactant system is significant to ensure a reliable performance of power production and longer life span of the fuel cell. Hydrogen was controlled according to the load variation and the reactant control system compensates the loading transient variation that meets the design requirements and produces a reliable performance. The Mass Flow Controller (MFC) meter used with the current input range between 0.004 to 0.020 A and was changed for the suitable supply of fuel flow accordingly. A Zigler-Nicholes method used to tune the PID controller using a parameter of Kc = 23,385, Ti = 0.011 and Td = 0.002. An optimum consumption of hydrogen observed with an average error from the overall reaction is 0.000423 A. From the result shown, the reactant control system build is competence to fulfill the loading demand.

Cite

CITATION STYLE

APA

Rosli, R. E., Sulong, A. B., Daud, W. R. W., Zulkifley, M. A., Rosli, M. I., Majlan, E. H., & Haque, M. A. (2016). Reactant Control System for Proton Exchange Membrane Fuel Cell. In Procedia Engineering (Vol. 148, pp. 615–620). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2016.06.524

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free