Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals

  • N. R
  • A.D. Z
  • M. R
  • et al.
N/ACitations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain-Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multichannel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based realtime subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.Copyright © 2016 Robinson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cite

CITATION STYLE

APA

N., R., A.D., Z., M., R., V.A., P., C., G., & N., B. (2016). Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals. PLoS ONE, 11(7), e0159959. https://doi.org/http://dx.doi.org/10.1371/journal.pone.0159959

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free