Redundancy and metabolic function of the glutamine synthetase gene family in poplar

21Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism in higher plants. In poplar, the GS family is organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1.1, GS1.2 and GS1.3) and one group that codes for the choroplastic GS isoform (GS2). Our previous work suggested that GS duplicates may have been retained to increase the amount of enzyme in a particular cell type. Results: The current study was conducted to test this hypothesis by developing a more comprehensive understanding of the molecular and biochemical characteristics of the poplar GS isoenzymes and by determinating their kinetic parameters. To obtain further insights into the function of the poplar GS genes, hybridization and laser capture microdissections were conducted in different tissues, and the precise GS gene spatial expression patterns were determined in specific cell/tissue types of the leaves, stems and roots. The molecular and functional analysis of the poplar GS family and the precise localization of the corresponding mRNA in different cell types strongly suggest that the GS isoforms play non-redundant roles in poplar tree biology. Furthermore, our results support the proposal that a function of the duplicated genes in specific cell/tissue types is to increase the abundance of the enzymes. Conclusion: Taken together, our results reveal that there is no redundancy in the poplar GS family at the whole plant level but it exists in specific cell types where the two duplicated genes are expressed and their gene expression products have similar metabolic roles. Gene redundancy may contribute to the homeostasis of nitrogen metabolism in functions associated with changes in environmental conditions and developmental stages.

Cite

CITATION STYLE

APA

Castro-Rodríguez, V., García-Gutiérrez, A., Cañas, R. A., Pascual, M. B., Avila, C., & Cánovas, F. M. (2015). Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-014-0365-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free