Regional analysis of parameter sensitivity for simulation of streamflow and hydrological fingerprints

1Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Diagnostics of hydrological models are pivotal for a better understanding of catchment functioning, and the analysis of dominating model parameters plays a key role for region-specific calibration or parameter transfer. A major challenge in the analysis of parameter sensitivity is the assessment of both temporal and spatial differences of parameter influences on simulated streamflow response. We present a methodological approach for global sensitivity analysis of hydrological models. The multilevel approach is geared towards complementary forms of streamflow response targets, and combines sensitivity analysis directed to hydrological fingerprints, i.e. temporally independent and temporally aggregated characteristics of streamflow (INDPAS), with the conventional analysis of the temporal dynamics of parameter sensitivity (TEDPAS).<br><br>The approach was tested in 14 mesoscale headwater catchments of the Ruhr River in western Germany using simulations with the spatially distributed hydrological model mHM. The multilevel analysis with diverse response characteristics allowed us to pinpoint parameter sensitivity patterns much more clearly as compared to using TEDPAS alone. It was not only possible to identify two dominating parameters, for soil moisture dynamics and evapotranspiration, but we could also disentangle the role of these and other parameters with reference to different streamflow characteristics. The combination of TEDPAS and INDPAS further allowed us to detect regional differences in parameter sensitivity and in simulated hydrological functioning, despite the rather small differences in the hydroclimatic and topographic setting of the Ruhr headwaters.

Cite

CITATION STYLE

APA

Höllering, S., Wienhöfer, J., Ihringer, J., Samaniego, L., & Zehe, E. (2018). Regional analysis of parameter sensitivity for simulation of streamflow and hydrological fingerprints. Hydrology and Earth System Sciences, 22(1), 203–220. https://doi.org/10.5194/hess-22-203-2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free