Role of heat generation and thermal diffusion during frontal photopolymerization

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

© 2015 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.

Cite

CITATION STYLE

APA

Hennessy, M. G., Vitale, A., Cabral, J. T., & Matar, O. K. (2015). Role of heat generation and thermal diffusion during frontal photopolymerization. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(2). https://doi.org/10.1103/PhysRevE.92.022403

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free