Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner

Citations of this article
Mendeley users who have this article in their library.


RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5??UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein–protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5??UTR by RNA-binding proteins in mRNA translation.




Brandariz-Núñez, A., Zeng, F., Ngoc Lam, Q., & Hong, J. I. N. (2018). Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA, 24(1), 43–55.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free