Scalable Bloom Filters

  • Hutchison D
  • Sergio A
  • Carlos B
  • et al.
Citations of this article
Mendeley users who have this article in their library.


Bloom filters provide space-efficient storage of sets at the cost of a probability of false positives on membership queries. The size of the filter must be defined a priori based on the number of elements to store and the desired false positive probability, being impossible to store extra elements without increasing the false positive probability. This leads typically to a conservative assumption regarding maximum set size, possibly by orders of magnitude, and a consequent space waste. This paper proposes Scalable Bloom Filters, a variant of Bloom filters that can adapt dynamically to the number of elements stored, while assuring a maximum false positive probability.




Hutchison, D., Sergio, a, Carlos, B., & Nuno, P. (2007). Scalable Bloom Filters. Information Processing Letters, 101(6), 255–261. Retrieved from

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free