Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential “hot zone” for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction of complicated cell-free synthetic biology systems.

Cite

CITATION STYLE

APA

Ma, F., Xie, Y., Luo, M., Wang, S., Hu, Y., Liu, Y., … Yang, G. Y. (2016). Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synthetic and Systems Biotechnology, 1(3), 195–206. https://doi.org/10.1016/j.synbio.2016.09.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free