Shockwave-Based Automated Vehicle Longitudinal Control Algorithm for Nonrecurrent Congestion Mitigation

  • Zhao L
  • Lee J
  • Chien S
  • et al.
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV) environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT) method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.

Cite

CITATION STYLE

APA

Zhao, L., Lee, J., Chien, S., & Oh, C. (2017). Shockwave-Based Automated Vehicle Longitudinal Control Algorithm for Nonrecurrent Congestion Mitigation. Journal of Advanced Transportation, 2017, 1–10. https://doi.org/10.1155/2017/6568135

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free