Some remarks on the geodetic number of a graph

Citations of this article
Mendeley users who have this article in their library.


A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G. We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs. © 2009 Elsevier B.V. All rights reserved.




Dourado, M. C., Protti, F., Rautenbach, D., & Szwarcfiter, J. L. (2010). Some remarks on the geodetic number of a graph. Discrete Mathematics, 310(4), 832–837.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free