Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach

  • K.D. S
  • G. R
  • A. Y
  • et al.
N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background. There is a renewed political will and financial support to eradicate malaria. Spatially-explicit risk profiling will play an important role in this endeavour. Patterns of Plasmodium falciparum infection prevalence were examined among schoolchildren in a highly malaria-endemic area. Methods. A questionnaire was administered and finger prick blood samples collected from 3,962 children, aged six to 16 years, attending 55 schools in a rural part of western Cote d'Ivoire. Information was gathered from the questionnaire on children's socioeconomic status and the use of bed nets for the prevention of malaria. Blood samples were processed with standardized, quality-controlled methods for diagnosis of Plasmodium spp. infections. Environmental data were obtained from satellite images and digitized maps. Bayesian variogram models for spatially-explicit risk modelling of P. falciparum infection prevalence were employed, assuming for stationary and non-stationary spatial processes. Findings. The overall prevalence of P. falciparum infection was 64.9%, ranging between 34.0% and 91.9% at the unit of the school. Risk factors for a P. falciparum infection included age, socioeconomic status, not sleeping under a bed net, distance to health care facilities and a number of environmental features (i.e. normalized difference vegetation index, rainfall and distance to rivers). After taking into account spatial correlation only age remained significant. Non-stationary models performed better than stationary models. Conclusion. Spatial risk profiling of P. falciparum prevalence data provides a useful tool for targeting malaria control intervention, and hence will play a role in the quest of local elimination and ultimate eradication of the disease. © 2008 Silue et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

K.D., S., G., R., A., Y., P., V., M., T., & E.K., N. (2008). Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach. Malaria Journal, 7, 111. https://doi.org/http://dx.doi.org/10.1186/1475-2875-7-111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free