Stochastic semantics of signaling as a composition of agent-view automata

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this paper we present a formalism based on stochastic automata to describe the stochastic dynamics of signal transduction networks that are specified by rule-sets. Our formalism gives a modular description of the underlying stochastic process, in the sense that it is a composition of smaller units, agent-views. The view of an agent is an automaton that identifies all local modification changes of that agent (internal state modifications, binding and unbinding), but also those of interacting agents, which are tested within the same rule. We show how to represent the generator matrix of the underlying Markov process of the whole rule-set as Kronecker sums of the rate matrices belonging to individual view-automata. In the absence of birth the automata are finite, since the number of different contexts in which one agent can appear in a rule-set is finite. We illustrate the framework by an example that is related to cellular signaling events. © 2011 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Koeppl, H., & Petrov, T. (2011). Stochastic semantics of signaling as a composition of agent-view automata. In Electronic Notes in Theoretical Computer Science (Vol. 272, pp. 3–17). https://doi.org/10.1016/j.entcs.2011.04.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free