Stochastic stability of damped Mathieu oscillator parametrically excited by a gaussian noise

11Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

This paper analyzes the stochastic stability of a damped Mathieu oscillator subjected to a parametric excitation of the form of a stationary Gaussian process, which may be both white and coloured. By applying deterministic and stochastic averaging, two Itô's differential equations are retrieved. Reference is made to stochastic stability in moments. The differential equations ruling the response statistical moment evolution are written by means of Itô's differential rule. A necessary and sufficient condition of stability in the moments of order r is that the matrix Ar of the coefficients of the ODE system ruling them has negative real eigenvalues and complex eigenvalues with negative real parts. Because of the linearity of the system the stability of the first two moments is the strongest condition of stability. In the case of the first moments (averages), critical values of the parameters are expressed analytically, while for the second moments the search for the critical values is made numerically. Some graphs are presented for representative cases. Copyright © 2012 Claudio Floris.

Cite

CITATION STYLE

APA

Floris, C. (2012). Stochastic stability of damped Mathieu oscillator parametrically excited by a gaussian noise. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/375913

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free