The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints

30Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

An analytical model is developed to determine the strain energy release rate in adhesive joints of various configurations such as the double-cantilever beam and single-lap joints. The model is based on asymptotic analysis of adhesive layer stresses and Irwin's crack closure integral. Closed-form solutions are presented for balanced and unbalanced joints under mode I, II and mixed-mode I/II that take into account the influence of the shear force on the adhesive stresses, and its influence on the strain energy release rate. The accuracy of the model is tested against the classical beam theory expressions for double-cantilever beam and end-notch flexure specimens. In fact, classical beam theory's expressions are found to be the lower bound of the proposed model solutions, and the two methods converge as the adhesive layer thickness decreases. Analysis of single-lap joints reveals the influence of edge shear forces on the total strain energy release rate, and more importantly on the ratio between modes I and II. Results from the proposed analytical model are in good agreement with finite element results and with analytical models found in the literature. © 2008 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Shahin, K., & Taheri, F. (2008). The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. International Journal of Solids and Structures, 45(25–26), 6284–6300. https://doi.org/10.1016/j.ijsolstr.2008.07.030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free