Structural Basis for Calcium Sensing by GCaMP2

Citations of this article
Mendeley users who have this article in their library.


Genetically encoded Ca2+ indicators are important tools that enable the measurement of Ca2+ dynamics in a physiologically relevant context. GCaMP2, one of the most robust indicators, is a circularly permutated EGFP (cpEGFP)/M13/calmodulin (CaM) fusion protein that has been successfully used for studying Ca2+ fluxes in vivo in the heart and vasculature of transgenic mice. Here we describe crystal structures of bright and dim states of GCaMP2 that reveal a sophisticated molecular mechanism for Ca2+ sensing. In the bright state, CaM stabilizes the fluorophore in an ionized state similar to that observed in EGFP. Mutational analysis confirmed critical interactions between the fluorophore and elements of the fused peptides. Solution scattering studies indicate that the Ca2+-free form of GCaMP2 is a compact, predocked state, suggesting a molecular basis for the relatively rapid signaling kinetics reported for this indicator. These studies provide a structural basis for the rational design of improved Ca2+-sensitive probes. © 2008 Elsevier Ltd. All rights reserved.

Author supplied keywords




Wang, Q., Shui, B., Kotlikoff, M. I., & Sondermann, H. (2008). Structural Basis for Calcium Sensing by GCaMP2. Structure, 16(12), 1817–1827.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free