A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length

129Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The regulation of junctional conductance (Gi) of the major cardiac (connexin43; Cx43) and liver (connexin32; Cx32) gap junction proteins by intracellular hydrogen ion concentration (pH; pHi), as well as well as that of a truncation mutant of Cx43 (M257) with 125 amino acids deleted from the COOH terminus, was characterized in pairs of Xenopus laevis oocytes expressing homologous channels. Oocytes were injected with 40 nl mRNAs (2 micrograms/microliters) encoding the respective proteins; subsequently, cells were stripped, paired, and incubated for 20–24 h. Gj was measured in oocyte pairs using the dual electrode voltage-clamp technique, while pHi was recorded simultaneously in the unstimulated cell by means of a proton-selective microelectrode. Because initial experiments showed that the pH-sensitive microelectrode responded more appropriately to acetate than to CO2 acidification, oocytes expressing Cx32 and wild type and mutant Cx43 were exposed to a sodium acetate saline, which was balanced to various levels of pH using NaOH and HCl. pH was changed in a stepwise manner, and quasi-steady-state Gj -pHi relationships were constructed from data collected at each step after both Gj and pHi had reached their respective asymptotic values. A moderate but significant increase of Gj was observed in Cx43 pairs as pHi decreased from 7.2 to 6.8. In both Cx32 and M257 pairs, Gj increased significantly over a wider pH range (i.e., between 7.2 and 6.3). Further acidification reversibly reduced Gj to zero in all oocyte pairs. Pooled data for the individual connexins obtained during uncoupling were fitted by the Hill equation; apparent 50%-maximum (pK;pKa) values were 6.6 and 6.1 for Cx43 and Cx32, respectively, and Hill coefficients were 4.2 for Cx43 and 6.2 for Cx32. Like Cx32, M257 had a more acidic pKa (6.1) and steeper Hill coefficient (6.0) than wild type Cx43. The pKa and Hill coefficient of M257 were very similar to those of Cx32. These experiments provide the first direct comparison of the effects of acidification on Gj in oocyte pairs expressing Cx43 or Cx32. The results indicate that structural differences in the connexins are the basis for their unequal sensitivity to intracellular acidification in vivo. The data further suggest that a common pH gating mechanism may exist between amino acid residues 1 and 256 in both Cx32 and Cx43. However, the longer carboxyl tail of Cx43 relative to Cx32 or M257 provides additional means to facilitate acidification-induced gating; its presence shifts the pKa from 6.1 (Cx32 and M257) to 6.6 (Cx43) in the conductance of these channels. © 1993, The Biophysical Society. All rights reserved.

Cite

CITATION STYLE

APA

Liu, S., Taffet, S., Stoner, L., Delmar, M., Vallano, M. L., & Jalife, J. (1993). A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. Biophysical Journal, 64(5), 1422–1433. https://doi.org/10.1016/S0006-3495(93)81508-X

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free