Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites

  • Bhalla U
N/ACitations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data. Again, sequences were recognized, and local channel modulation downstream of putative sequence-triggered signaling could elicit changes in neuronal firing. We predict that dendritic sequence-recognition zones occupy 5 to 30 microns and recognize time-intervals of 0.2 to 5 s. We suggest that this mechanism provides highly parallel and selective neural computation in a functionally important time range.

Cite

CITATION STYLE

APA

Bhalla, U. S. (2017). Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. ELife, 6. https://doi.org/10.7554/elife.25827

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free