System identification and control using adaptive particle swarm optimization

105Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

This paper presents a methodology for finding optimal system parameters and optimal control parameters using a novel adaptive particle swarm optimization (APSO) algorithm. In the proposed APSO, every particle dynamically adjusts inertia weight according to feedback taken from particles' best memories. The main advantages of the proposed APSO are to achieve faster convergence speed and better solution accuracy with minimum incremental computational burden. In the beginning we attempt to utilize the proposed algorithm to identify the unknown system parameters the structure of which is assumed to be known previously. Next, according to the identified system, PID gains are optimally found by also using the proposed algorithm. Two simulated examples are finally given to demonstrate the effectiveness of the proposed algorithm. The comparison to PSO with linearly decreasing inertia weight (LDW-PSO) and genetic algorithm (GA) exhibits the APSO-based system's superiority. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Alfi, A., & Modares, H. (2011). System identification and control using adaptive particle swarm optimization. Applied Mathematical Modelling, 35(3), 1210–1221. https://doi.org/10.1016/j.apm.2010.08.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free