Systematic analysis of the molecular mechanism underlying atherosclerosis using a text mining approach

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: Atherosclerosis is one of the common health threats all over the world. It is a complex heritable disease that affects arterial blood vessels. Chronic inflammatory response plays an important role in atherogenesis. There has been little success in fully identifying functionally important genes in the pathogenesis of atherosclerosis. RESULTS: In the present study, we performed a systematic analysis of atherosclerosis-related genes using text mining. We identified a total of 1312 genes. Gene ontology (GO) analysis revealed that a total of 35 terms exhibited significance (p < 0.05) as overrepresented terms, indicating that atherosclerosis invokes many genes with a wide range of different functions. Pathway analysis demonstrated that the most highly enriched pathway is the Toll-like receptor signaling pathway. Finally, through gene network analysis, we prioritized 48 genes using the hub gene method. CONCLUSIONS: Our study provides a valuable resource for the in-depth understanding of the mechanism underlying atherosclerosis.

Cite

CITATION STYLE

APA

Xi, D., Zhao, J., Lai, W., & Guo, Z. (2016). Systematic analysis of the molecular mechanism underlying atherosclerosis using a text mining approach. Human Genomics, 10(1), 14. https://doi.org/10.1186/s40246-016-0075-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free