Technical Note: On the possibly missing mechanism of 15 1/4m emission in the mesosphere-lower thermosphere (MLT)

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Accurate knowledge of the rate as well as the mechanism of excitation of the bending mode of CO2 is necessary for reliable modeling of the mesosphere-lower thermosphere (MLT) region of the atmosphere. Assuming the excitation mechanism to be thermal collisions with atomic oxygen, the rate coefficient derived from the observed 15 1/4m emission by space-based experiments ( k ATM Combining double low line 6.0 × 10−12 cm3s−1) differs from the laboratory measurements ( k LAB Combining double low line(1.5-2.5) × 10−12 cm3s−1) by a factor of 2-4. The general circulation models (GCMs) of Earth, Venus, and Mars have chosen to use a median value of k GCM Combining double low line 3.0 × 10−12 cm3sg'1 for this rate coefficient. As a first step to resolve the discrepancies between the three rate coefficients, we attempt to find the source of disagreement between the first two. It is pointed out that a large magnitude of the difference between these two rate coefficients ( k x ≡ k ATM - k LAB) requires that the unknown mechanism involve one or both major species: N2, O. Because of the rapidly decreasing volume mixing ratio (VMR) of CO2 with altitude, the exciting partner must be long lived and transfer energy efficiently. It is shown that thermal collisions with N2, mediated by a near-resonant rotation-to-vibration (RV) energy transfer process, while giving a reasonable rate coefficient k VR for de-excitation of the bending mode of CO2, lead to vibration-to-translation k VT rate coefficients in the terrestrial atmosphere that are 1-2 orders of magnitude larger than those observed in the laboratory. It is pointed out that the efficient near-resonant rotation-to-vibration (RV) energy transfer process has a chance of being the unknown mechanism if very high rotational levels of N2, produced by the reaction of N and NO and other collisional processes, have a super-thermal population and are long lived. Since atomic oxygen plays a critical role in the mechanisms discussed here, it suggested that its density be determined experimentally by ground- and space-based Raman lidars proposed earlier.

Cite

CITATION STYLE

APA

Sharma, R. D. (2015). Technical Note: On the possibly missing mechanism of 15 1/4m emission in the mesosphere-lower thermosphere (MLT). Atmospheric Chemistry and Physics, 15(4), 1661–1667. https://doi.org/10.5194/acp-15-1661-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free