Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: Silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping

0Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

SUMO-1 is a member of a ubiquitin-related family of proteins that mediates important post-translational effects affecting diverse physiological functions. Whereas SUMO-1 is detected in the testis, little is known about its reproductive role in males. Herein, cell-specific SUMO-1 was localized in freshly isolated, purified male germ cells and somatic cells of mouse and rat testes using Western analysis, high-resolution single-cell bioimaging, and in situ confocal microscopy of seminiferous tubules. During germ cell development, SUMO-1 was observed at low but detectable levels in the cytoplasm of spermatogonia and early spermatocytes. SUMO-1 appeared on gonosomal chromatin during zygotene when chromosome homologues pair and sex chromatin condensation is initiated. Striking SUMO-1 increases in the sex body of early-to-mid-pachytene spermatocytes correlated with timing of additional sex chromosome condensation. Before the completion of the first meiotic division, SUMO-1 disappeared from the sex body when X and Y chromosomal activity resumed. Together, these data indicate that sumoylation may be involved in non-homologous chromosomal synapsis, meiotic sex chromosome inactivation, and XY body formation. During spermiogenesis, SUMO-1 localized in chromocenters of certain round spermatids and perinuclear ring and centrosomes of elongating spermatids, data implicating SUMO-1 in the process of microtubule nucleation and nuclear reshaping. STAT-4, one potential target of sumoylation, was located along the spermatid nuclei, adjacent but not co-localized with SUMO-1. Androgen receptor-positive Leydig, Sertoli, and some peritubular myoepithelial cells express SUMO-1, findings suggesting a role in modulating steroid action. Testicular SUMO-1 expression supports its specific functions in inactivation of sex chromosomes during meiosis, spermatid microtubule nucleation, nuclear reshaping, and gene expression. © 2005 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Vigodner, M., & Morris, P. L. (2005). Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: Silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Developmental Biology, 282(2), 480–492. https://doi.org/10.1016/j.ydbio.2005.03.034

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free